Algorand: Scaling Byzantine
Agreements for Cryptocurrencies

Hyunjin Kim
KAIST

Introduction

e PreviousPresentations: “How secure PoW is?”
—Attack on Bitcoin Mining pool
—Attack on Bitcoin Communication
—Attack on Bitcoin Consensus mechanism

= Then, "How fast PoOW data generationis?’

Transaction Throughput of PoW

Height 1

Height O

Height 1

Height 2

A

4

Block Size: around S Byte

>
l

Block Interval: T sec

»
P

Transaction Processed with average speed of S/E[T]byte/sec
For Bitcoin, protocol setsS: 1M B, E[T]:600sec

Changing S: c or E[T]: 1/ co?

e NoO,Because of the Propagation Delay.

Block Interval: T sec

le >
[>

Node A

Node B

\

Node C

Propagation Delay d of Block 20 for node C

W asted Hash Power

e |nnext block generation,

node C wastes d/T of its hash power

T
<+—— |f Block Interval |, T |

Node A

¥
)
t

N ¢
|
— If Block Size 1, d 1
d

=» Cannot improve performance dramatically by Block size increment or Interval decrement

Node B

Node C

Content

e Various Consensus Mechanisms on Permissionless Blockchain
o Proof of X

o Hybrid Consensus

o Multiple Committee Consensus
e Algorand

o VRFandcryptographicsortition

o Block Proposal

o @Gossip Protocol

o Byzantine Agreement*

Various Consensus Mechanisms

From SoK: Consensus in the Age of Blockchains
(S.Bano, A.Sonnino, M . Al-Bassam, S. Azouvi, P.McCorry, S.Meiklejohn, G. Danezis)

Proof-of-X

Lottery based on ‘Undeniable Proof’

Proof of Stake: ‘Undeniable Proof’ =logged coin
Proof of Capacity: ‘Undeniable Proof’ = signed distributed file storage proof
Proof of Elapsed Time: ‘Undeniable Proof’ = signed waitingtime

Hybrid Consensus

Previous Two Approaches

Proof of X BFT consensus

Sybil Resistant, but slow Fast, but no Sybil Resistant

Hybrid Consensus

Select committee from Sybil resistant mechanism

.

Do BFT consensus

Example: ByzCoin

blockchain

share window of size w

<—D<—|:| (e J—]« |« 54 {:|<_D<_ 1. Miner of Accepted Block get

voting weight for each block

[-
' -~
block %

1 share 2. Miner with voting right do
C trustees PBFT consensus for one block
O miner - -
]
L leader —

Multiple Comittee Consensus

e Simple solution for transaction throughput: M ake another chain, each miner
only manage one chain

W hat can be Problem?

Challenge 1 on Multiple Committee

shard

d | shard d

I
e | Mg |

shard | shard | shard

shad | shard | shard

1% Attack

In 100 shards system, it takes only 1%

of network hash rate to dominate the shard.

Solution: Well randomized miner distribution mechanism

Challenge 2 on Multiple Committee

e How addresschain A and chain B communicate”?
Solution: Periodic global block generation, consensus mechanism between
A and B

Chain A

Chain B

Example: Omniledger

(1) Sharding (2) Consensus (3) TX Commit
(via RandHound) . (via OmniCon) (via Atomix)
membership 4 i "fd;,,
validators ,..enange. , client
(sharded) e NN & " tXio2
S
identity blockchain identity blockchain ledgers

(sharded)

epoch e-1 epoche

Performance Comparison - PoW

Bitcoin Ttx/s 600s
Bitcoin-NG 7tx/s <1s
GHOST - -
DECOR+HOP 30tx/s 60s

Spectre - -

Performance Comparison - PoX

Committee Formation | Throughput

Ouroboros Lottery 257 .6tx/s

Praos Stake - -
Snow-white Stake 100-150tx/s -
PermaCoin PoW/PoR - -
SpaceMint PoS - 600s
Intel POET Hardware Trust 1000tx/s -

REM Hardware Trust - -

Performance Comparison - Hybrid

Committee Formation | Throughput

ByzCoin 1000tx/s 10-20s
Algorand Lottery 90tx/h 40s
Hyperledger Permissioned 110k tx/s <1s

RSCoin Permissioned 2k tx/s <1s

Elastico PoW 16 blocks/110s 110s/16blocks
Omniledger PoW/PoX 10k tx/s 1s

Chainspace Flexible 350tx/s <1s

Algorand: Scaling Byzantine
Agreements for Cryptocurrencies

Yossi Gilad, Rotemm Hemo, Silvio Micali, Georgios Vlachos, Nickolai Zeldovich
ACM SOSP'17

Why Algorand is explained, instead of other?

1. Goodtx throughput without sharding mechanism
—Sharding can be independently applied over Algorand mechanism

2. lLesscentralized tendency from lessincentivization

Purpose of Algorand

1.Short latency with high transaction throughput
—transaction processing under 1 minute

2.3calingto many users,resistant to Sybil attacks

3.Nodivergent view evenintemporarily partitioned network

Design Overview

1. Block Proposal Phase
— block proposal based on VRF
— propagated by gossip protocol

2. Agreement Phase
— committee selection based on VRF
— selected committee

CryptographicSortition

ARARRsS

| o | |
I I
o o
r—d

BinaryBA()

Decide
between
received block
and @

Assumptions

e Adversary’'smoney(coin) should not be over ¥ of total money

e Safety
—|f one honest user acceptstransaction A,then the any transaction accepted from all honest users
will be based on the log containing transaction A

—This should be hold even for temporarily partitioned users (disconnected users)
—Safety holds on weak synchrony

long asynchronous periods(lessthan 1 day~1week),
followed by some strongly synchronous periods(more than few hour~1day)

Assumptions

e Liveness
—All hones nodes make progress of logswithin roughly one minute

—Liveness holds on strongsynchrony
M ost honest users(95%) can receive message of other honest users on bounded time

Cryptographic Sortition with VRF

Someone want to randomly select about 4 tokensfrom total token,
How todothat?

User A User B UserC

Cryptographic Sortition with VRF

1.For each ,Write random number in [0, 1)
2.1fthenumber islessthan 4/7, select it.
= So Simple!

X<4/77?

» Select!

Verifiable Random Function

1. Random Hash Generation:(Hash, m) € VRFg, (s)
(Hash:random value, - proof, ska:a's secret key, s: string)
2. Hash Generation Proof: VerifyVRFpka(Hash, r, s)
= Prove with a’s publickey and ,whether Hash is generated from sand «

Why VRF is needed?

1.A node can generate random value fromitssecret value
2.0ther nodes can prove the random value isindeed usingthe secret value

= attacker cannot change hash result rapidly by just changingvalue, or changingsecret key
3.0Other nodes cannot expect the hash result before the node announce the hash and

proof
= attacker istoolate to make DoSattack, since the result is already propagated

Cryptographic Sortition with VRF

“| will get random value.” « —

procedure Sortition(sk, seed, 7, role, w, W):

(hash,) < VRF(seed||role)

“I will roll dice on my
coins based on the
value.”

P
je0

hash
zhashlen ¢

while

|_ J++

return (hash,n,j)

J;czo B(k;w,p), Zf:o B(k; W,p)) do

Cryptographic Sortition with VRF

“Is the value is really random?” « —

procedure VerifySort(pk, hash, z, seed, T, role, w, W):

if —VerifyVRF,, (hash, r, seed||role) then return 0;

“‘Let’'s see how many
coins are selected.”

P

je—0

while gl ¢ [} Blkivp) Z{7, Bk w.p) do
| J++

return j

Block Proposal

e Simply, We canthink about all user rolling dice(Cryptographic Sortition) and
say it to neighbor!

~ ~ ~ A~F
OLO0:0I0Z0=0%0
A B C D E F G

Problem: Too many messages (21 messages on example)!
How to solve this?

Block Priority Number

1. Make apriority number, send own block with the number
2. Only accept the blocks with higher number, update highest number

3. Wait some times for block propagation

0J050,04020.0
B C D E F G

Only 7 messages on example

Byzantine Agreement*

Two phase agreement process for proposed blocks

commitee group’smember is selected by cryptographic sortition before Reduction Phase

1.Reduction Phase

—each committee member either decides a proposed block or decides an empty block
2.Binary Byzantine Agreement Phase

—each committee member decides a block with the result from Reduction Phase

Reduction Phase

Two steps for reduction

1.

Votesfor hash of highest priority block

Votesagain for the hash picked by
more than T(2/3) of committee member
—|f thereisno majority, decidesto vote on empty block

user A

user B ——

user C

user D

Binary Byzantine Agreement Phase

lterate three processuntil the user knows majority value
If maximum stepsreached, recovery process follows

CommitteeVote(ctx, round, step, Tsyep, T)
r «— CountVotes(ctx, round, step, Tsep, Tsrep, Aster)
if r = TiMEoUT then
| r < block_hash
else if r # empty_hash then
for step < s’ < step+3 do
| CommitteeVote(ctx, round, s’, Tsrgp, 1)
if step = 1then
| CommitteeVote(ctx, round, FINAL, Tynar, I)

returnr
step++

CommitteeVote(ctx, round, step, Tsrgp, I)
r « CountVotes(ctx, round, step, Tsrep, Tsreps Astep)
if r = TiMeOUT then
| r e empty_hash
else if r = empty hash then
L for step < s’ < step+3 do
| CommitteeVote(ctx, round, s’, Tsrep, 1)

returnr
step++

CommitteeVote(ctx, round, step, tsrpp, 1)
r «— CountVotes(ctx, round, step, Tsrgp, Tsreps Astep)
if r = TimeouT then
if CommonCoin(ctx, round, step, Tsrep) = 0 then
| r « block_hash
else
| r e empty_hash

step++

BinaryBA Phase 1

If there’smajority value, return with the value. « CommitteeVote(ctx, round, step, Tsre, 1)
r «— CountVotes(ctx, round, step, Tsrep, Tsreps Astip)

if r = TimeouT then

|__r < block_hash
——| else if r # empty hash then
for step <s” < step+3 do

| CommitteeVote(ctx, round, s’, Tsrep,)
if step = 1then

| CommitteeVote(ctx, round, FINAL, Tepnar, 1)

—|__ return r

step++

BinaryBA Phase 1 - case 2

Some nodes can timed out by adversary. CommitteeVote(otx, round, step, Tyrpr, 1)

o r « CountVotes(ctx, round, step, Tsrep, Tsreps Astep)
Finished node vote for them. « iF# w FiniaGTT R

| r < block_hash
else if r # empty hash then

for step < s" < step+3 do
| CommitteeVote(ctx, round, s’, Tsrep,)
if step = 1then
| CommitteeVote(ctx, round, FINAL, Tepnar, 1)
L returnr
step++

BinaryBA Phase 2

CommitteeVote(ctx, round, step, Tsrgp, ¥)
r « CountVotes(ctx, round, step, Tsrgp, Tsreps Astep)
if r = TimeouT then

| r < empty hash

Consensus of Timed out users
Same thing happenson phase 1

else if r = empty hash then
for step < s’ < step+3 do
| CommitteeVote(ctx, round, s’, tsrgp, 1)

returnr
step++

BinaryBA Phase 3

Phase 3 for mitigating adversary’s attack (splitting committee network)
—adversary can split final decision if it knows each node’s decision

—the attack isprevented eventually with + probability

CommitteeVote(ctx, round, step, Tsrgp, 1)
r « CountVotes(ctx, round, step, Tsrep, Tstep, Aster)
if r = TimeouT then

if CommonCoin(ctx, round, step, Tsp) = 0 then
| r <« block_hash

else
| r « empty_hash
step++

Evaluation Results

Key Evaluation Points:
1.What isthe latency of Algorand, how does it scales over the number of the users?
2.W hat throughput can Algorand achieve?
3.How does Algorand perform when users misbehave?

Latency Evaluation Results

Oneround of agreement takeslessthan 1 minute for 5K~50K users (100~1000VMs, 50 users per
machine)

25
i
20 % %H% % 1§ %
0 15
@
E
=10
5
—e— Round Completion
0

Number of Users

Throughput Evaluation Results

10M B block isadded to the blockchain within 1 minute (with 1000VM s, 50 users per machine)
60

I BAX Final Step
50 (mmm BA* w/o Final Step
m Block Proposal

Block Size

Latency over malicious users

Block generation latency does not change on malicious user changes

25

—

20

15

Time (s)

—e— Round Completion

0 5 10 15 20
% Malicious Users

Limitation
1. Lack of Incentive mechanism

-t may not attract many usersasother blockchain systems

2. Still high latency
—1 minute latency still can make limited application usage

3. High bootstraping costs
—usersneedto fetch large amount of data for node setup

Follow-up Paper

Snowflake to Avalanche: A Novel M etastable Consensus Protocol Family for Cryptocurrencies
(Team Rocket,2018)

—Scalable to many users, by usingverifiable random function
—Modify chain design into DAG: improve transaction throughput

(e, d(T1)) = (1,5)

- P,

Questions?

